College of Science and Mathematics » Department of Mathematics
143 achievements

143 achievements

Amarasinghe, Thisath
Vega, O., Amarasinghe, R., & Premadasa, K.  (2013). Advanced Algebra for Teachers. 
Find It!
Vega, O., Amarasinghe, R., Burger, L., Nogin, M., & Tuska, A.  (2013). Exploring Mathematics: Investigations for Elementary School Teachers.  Cognella.
Find It!
Amarasinghe, R., Benitez, D., & Dean, G.  (2010). Reasons Behind the Positive Effects of Using Dynamic Computer Software in High School Mathematics Classrooms. Presented at Society for Information Technology & Teacher Education (SITE) International Conference, San Diego, California.
Burger, Lance Dean
Vega, O., Amarasinghe, R., Burger, L., Nogin, M., & Tuska, A.  (2013). Exploring Mathematics: Investigations for Elementary School Teachers.  Cognella.
Find It!
Caprau, Carmen Livia
Caprau, C.  (2015). Movie moves for singular link cobordisms in 4-dimensional space.  World Scientific. 21.
Find It!
Caprau, C.  (2015). Movie Moves for singular link cobordisms in 4-dimensional space. Presented at AMS Sectional Meeting, California State University, Fullerton .
Caprau, C.  (2015). The Khovanov homology and spatial graphs. Presented at AMS Sectional Meeting, California State University, Fullerton.
Caprau, C.  (2015). A Khovanov-type homology theory for singular knots and tangles. Presented at AMS Sectional Meeting, Loyola University, Chicago.
Caprau, C.  (2015). Moves for isotopic singular link cobordisms in 4-dimensional space. Presented at AMS Sectional Meeting, Georgetown University, Washington D.C.
Caprau, C.  (2015). Fresno State Tensor Women Scholars. Presented at MAA Poster Session-Mathematical Outreach Programs, Joint Mathematics Meetings, San Antonio.
Caprau, C., Pena , A., & McGahan, S.  (2015). Virtual singular braids and links.  Manuscripta Mathematica.
Find It!
Caprau, C., & Urabe, K.  (2015). A formula for the Dubrovnik polynomial of rational knots.  Publicacions Matematiques.
Find It!
Caprau, C.  (2014). Rational tangles and continued fractions. Presented at Fresno State Mathematics REU, Fresno State University .
Caprau, C.  (2014). Quantum invariants for singular links. Presented at 14th Chico Topology Conference, CSU Chico.
Caprau, C.  (2014). On a categorification for the sl(n) polynomial (for n >3). Presented at Joint Mathematics Meetings, Baltimore, MD.
Caprau, C.  (2014). The Kauffman bracket for singular links. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C.  (2014). Quantum invariants for knot-like objects. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C., Chichester, A., & Chu, P.  (2014). Three approaches to a bracket polynomial for singular links.  Involve-A Journal of Mathematics.
Find It!
Caprau, C., Heywood, D., & Ibarra, D.  (2014). On a state model for the SO(2n) Kauffman polynomial.  Involve-A Journal of Mathematics. 7(No. 4), 547-563.
Find It!
Caprau, C., & Smith, J.  (2014). The Singular Temperley-Lieb Category.  ISRN Geometry. 1-9.
Find It!
Caprau, C., & Tipton, J.  (2014). The Kauffman polynomial and trivalent graphs.  Kyungpook Mathematical Journal.
Find It!
Caprau, C.  (2013). The sl(2) foam cohomology via a TQFT.  New York Journal of Mathematics. 61-90.
Find It!
Caprau, C.  (2013). Twin TQFTs and Frobenius Algebras.  Journal of Mathematics. 1-25.
Find It!
Caprau, C.  (2013). Yang-Baxter state models and singular links. Presented at AMS Sectional Meeting, Washington University, St. Louis, MO.
Caprau, C.  (2013). Invariants for spatial graphs. Presented at 2013 International Workshop on Spatial Graphs, Tokyo Women’s Christian University, Tokyo, Japan.
Caprau, C.  (2013). Foams and sl(n) tangle cohomology. Presented at Joint Mathematics Meetings, San Diego, CA.
Caprau, C.  (2013). The Kauffman bracket via a solution to the Yang-Baxter equation. Presented at Department of Mathematics Seminar Series.
Caprau, C.  (2013). Knot-theoretic interactions and matrix algebra. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C., Kuneli, M., & Urabe, K.  (2013). Celebration of Women in Mathematics. Presented at Mathematics Colloquium, Fresno State.
Caprau, C.  (2012). On the quantum filtration of the universal sl(2) foam cohomology.  Journal of Knot Theory and Its Ramifications (JKTR). 21(03), 1250023.
Find It!
Caprau, C.  (2012). Introduction to Knot Theory. Presented at Mathematics REU, Fresno State.
Caprau, C.  (2012). An invariant for handlebody-tangles. Presented at AMS Sectional Meeting, University of Kansas, Lawrence, KS.
Caprau, C.  (2012). On a cohomology theory for colored tangles. Presented at AMS Sectional Meeting, University of South Florida, Tampa, FL.
Caprau, C.  (2012). An invariant for handlebody-tangles: Part II. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C.  (2012). An invariant for handlebody-tangles: Part I. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C.  (2011). Trivalent graphs and the Kauffman polynomial. Presented at “Knots in Washington XXXII”, George Washington University, Washington D.C.
Caprau, C.  (2011). A polynomial invariant of 3-valent graphs embedded in R^3. Presented at AMS Sectional Meeting, University of Iowa, Iowa City, IA.
Caprau, C.  (2011). Searching for invariants for graphs. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C.  (2011). A model for the Kauffman polynomial. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C.  (2010). Sl(n) link homology. Presented at AMS Sectional Meeting, University of California Los Angeles.
Caprau, C.  (2010). On a categorification of the colored Jones polynomial. Presented at “KNOTS in Poland III”, International Conference on Knot Theory and its Ramifications, Stefan Banach International Mathematical Center, Warsaw, Poland.
Caprau, C.  (2010). Link cohomology and extended TQFTs. Presented at AMS Sectional Meeting, New Jersey Institute of Technology, Newark, NJ.
Caprau, C.  (2010). The universal sl(2) foam cohomoloy. Presented at Connections for Women: Homology Theories of Knots and Links, Mathematical Sciences Research Institute (MSRI), Berkeley.
Caprau, C.  (2010). Universal Khovanov-Rozansky sl(2) cohomology.  Journal of Knot Theory and its Ramifications. 19(6), 739-761.
Find It!
Caprau, C.  (2009). On the sl(2) foam cohomology computations.  Journal of Knot Theory and Its Ramifications. 18(9), 1313 -1328.
Find It!
Caprau, C.  (2009). The universal sl ( 2 ) cohomology via webs and foams.  Topology and its Applications. 156(9), 1684-1702.
Find It!
Caprau, C.  (2009). The universal sl(2) foam cohomology for links via extended TQFTs. Presented at AMS Sectional Meeting, UC Riverside, Riverside, CA.
Caprau, C.  (2009). On the filtered sl(2) foam cohomology for links. Presented at AMS Sectional Meeting, Florida Atlantic University, Boca Raton, FL.
Caprau, C.  (2009). On the universal sl(2) foam cohomology. Presented at “Claremont Topology Seminar”, Claremont Colleges, Claremont.
Caprau, C.  (2009). The universal sl(2) link homology: Part II. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C.  (2009). The universal sl(2) link homology: Part I. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C.  (2008). TQFTs defined on singular 2-cobordisms. Presented at 8th Annual Red Raider Mini-Symposium: The Topology and Geometry of Physics Conference, Texas Tech University, Lubbock, Texas.
Caprau, C.  (2008). The universal sl(2)-link cohomology via webs and foams. Presented at AMS Sectional Meeting, Claremont McKenna College, Claremont.
Caprau, C.  (2008). Link homologies via webs and foams. Presented at 2 lectures and 2 seminar presentations) University of Iowa, University of Iowa, Iowa City.
Caprau, C.  (2008). On the Khovanov-Rozansky cohomology. Presented at AMS Sectional Meeting, Louisiana State University, Baton Rouge.
Caprau, C.  (2008). Khovanov homology. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C.  (2008). sl(2) tangle homology with a parameter and singular cobordisms.  Algebraic and Geometric Topology. 729-756.
Find It!
Caprau, C.  (2007). On a generalized version of the Khovanov-Rozansky Homology for n = 2. Presented at Workshop on Knots and Quantum Computing, University of Texas at Dallas.
Caprau, C.  (2007). On the universal sl(2)-link cohomology. Presented at “Cascade Topology Seminar”, Boise State University.
Caprau, C.  (2007). An sl(2) tangle homology and seamed cobordisms. Presented at AMS Sectional Meeting, Miami University, Oxford, Ohio.
Caprau, C.  (2007). Categorification and Topological Quantum Field Theory: Part II. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C.  (2007). Categorification and Topological Quantum Field Theory: Part I. Presented at Department of Mathematics Seminar Series, Fresno State.
Caprau, C.  (2006). An sl(2) tangle homology for dotted, seamed cobordisms. Presented at CMS, Toronto.
Caprau, C.  (2006). An sl(2) tangle homology for seamed cobordisms with polynomial coefficients. Presented at Knots in Washington, George Washington University, Washington D.C.
Caprau, C.  (2006). Khovanov homology for tangles and cobordisms. Presented at Low Dimensional Topology Seminar, University of Iowa.
Caprau, C.  (2006). The Alexander polynomial. Presented at Graduate And Undergraduate Student Seminar (GAUSS), University of Iowa.
Caprau, C.  (2006). Triply graded link homology. Presented at Topology Seminar, University of Iowa.
Caprau, C.  (2005). Introduction to Khovanov-Rozansky homology, Presented at Workshop on Khovanov and Hochschild homology, University of Iowa.
Caprau, C.  (2005). Introduction to Macaulay 2. Presented at Low Dimensional Topology Seminar, University of Iowa.
Caprau, C.  (2004). The Alexander polynomial and its first form. Presented at Topology Seminar, University of Iowa.
Caprau, C., Rendi, M., Mithut, I., & Popescu, D.  (1999). Colectie de probleme.  Matematici speciale pentru ingineri. Romanian: The “Politehnica’’ Publishing House.
Find It!
Găvruţa, P., Hossu, M., Popescu, D., & Căprău, C.  (1995). On the stability of mappings and an answer to a problem of TH.M. Rassias.  Ann Math Blaise Pascal.
Find It!
Caprau, C., Okano, T., & Orton, D.  Singular links and Yang-Baxter state models.  Rocky Mountain Journal of Mathematics.
Find It!
Cusick, Larry
Cusick, L., & Vega, O.  (2011). Finite groups of derangements on the n-cube II.  Electronic Journal of Combinatorics. 18(1), 1-6.
Find It!
Cusick, L.  (2008). Archimedean Quadrature Redux.  Mathematics Magazine. 2008(April), 83-95.
Find It!
Delcroix, Stefaan D.
Delcroix, S.  (2013). Block-Diagonal Characterization of Locally Finite Simple Groups of p-Type.  Journal of Group Theory.
Find It!
Delcroix, S., & Fisher, M.  (2012). The Hausdorff Dimension of a Graph-Directed Set Whose Underlying Multigraph is a Cartesian Product or a Tensor Product of Multigraphs.  Fractals. 20(3-4), 217-225.
Find It!
Delcroix, S.  (2008). Local Characterization of Non-Finitary Locally Finite Simple Groups.  Journal of Group Theory. 11(4), 537-544.
Find It!
Delcroix, S.  (2007). Block-Diagonality of LFS-Groups of P-type.  Journal of Algebra. 419-453.
Find It!
Delcroix, S.  (2007). Block-diagonality of LFS-groups of p-type.  Journal of Algebra. 315(1), 419-453.
Find It!
Delcroix, S.  (2002). Locally Finite Simple Groups of 1-Type.  Journal of Algebra. 247(2), 728-746.
Find It!
Deleon, Doreen R. N.
De Leon, D.  (2010). Classroom Capsules - Euler-Cauchy Using Undetermined Coefficients.  The College Mathematics Journal. 41(3), 235.
Find It!
De Leon, D.  (2008). A Wavelet Multigrid Method Applied to the Stokes and Incompressible Navier-Stokes Problems.  Journal of Mathematical Sciences: Advances and Applications. 1(3), 601-622.
Find It!
De Leon, D.  (2008). A new wavelet multigrid method.  Journal of Computational and Applied Mathematics. 220(1-2), 674-685.
Find It!
Forgacs, Tamas
Csordas, G., & Forgács, T.  (2016). Multiplier sequences, classes of generalized Bessel functions and open problems.  Journal of Mathematical Analysis and Applications. 433(2), 1369-1389.
Find It!
Forgács, T., & Tran, K.  (2016). Polynomials with rational generating functions and real zeros.  YJMAA Journal of Mathematical Analysis and Applications. 443(2), 631-651.
Find It!
Forgács, T.  (2015). FURST - A Symbiotic Approach to Research at Primarily Undergraduate Institutions.  Directions for Mathematics Research Experience for Undergraduates. (pp.17-31) World Scientific.
Find It!
Forgács, T., & Piotrowski, A.  (2015). Hermite Multiplier Sequences and Their Associated Operators.  Constructive Approximation. 42(3), 459-479.
Find It!
Forg acs, T., Haley, J., Menke, R., & Simon, C.  (2014). The non-existence of cubic Legendre multiplier sequences, Involve, a Journal of Mathematic.  Involve, a Journal of Mathematics. 773-786.
Find It!
Forgacs, T., & Piotrowski, A.  (2013). Multiplier sequences for generalized Laguerre bases.  Rocky Mountain Journal of Math. 43(4), 1141-1159.
Find It!
Vega, O., & Forgacs, T.  (2013). Analysis and Algebra.  University Readers.
Find It!
Blakeman, K., Davis, E., Forgacs, T., & Urabe, K.  (2012). On Legendre multiplier sequences.  Missouri Journal of Mathematical Sciences. 24(1), 7-23.
Find It!
Forgács, T., Tipton, J., & Wright, B.  (2012). Multiplier sequences for simple sets of polynomials.  Acta Mathematica Hungarica. 1-14.
Find It!
Cseh, A., & Forgacs, T.  (2009). The Effects of Mental Health Parity Legislation on Mental Health Related Hospitalizations.  The Journal of Economics. 35(1), 1-20.
Find It!
Forgacs, T., & Varolin, D.  (2007). Sufficient Conditions for Interpolation and Sampling Hypersurfaces in the Bergman Ball.  International Journal of Mathematics. 18(5), 559-584.
Find It!
Nogin, Maria
Vega, O., Amarasinghe, R., Burger, L., Nogin, M., & Tuska, A.  (2013). Exploring Mathematics: Investigations for Elementary School Teachers.  Cognella.
Find It!
Nogin, M.  (2007). A short proof of Eilenberg and Moore's theorem.  Central European Journal of Mathematics. 5(1), 201-204.
Find It!
Sabuwala, Adnan
Sabuwala, A.  (2010). Particular Solution to the Euler-Cauchy Equation with Polynomial Non-Homogeneities, Contributed Session ODE's and Applications. Presented at 8th AIMS International Conference on Dynamical Systems Differential Equations and Applications, Dresden, Germany.
Tuska, Agnes
Vega, O., Amarasinghe, R., Burger, L., Nogin, M., & Tuska, A.  (2013). Exploring Mathematics: Investigations for Elementary School Teachers.  Cognella.
Find It!
Tuska, A.  (2010). One Problem, Many Solutions, More New Problems.  California Mathematics Council Communicator. 34(3), 39-40.
Find It!
Tuska, A.  (2010). The surface area of the sphere – How can high school students learn from the best problem solvers?. Presented at Conference History of Mathematics and Teaching of Mathematics, Miskolc.
Tuska, A., & Amarasinghe, R.  (2007). The Effects of Participating in Lesson Studies on Practices of Teaching Mathematics. Presented at Mathematics Education into the 21st Century Project’s International Conference, Charlotte, North Carolina.
Find It!
Tuska, A.  (2006). Lesson study: A Student-Centered Professional Development Opportunity for Teachers.  Thinking Classroom/Peremena: International Journal of Reading, Writing and Critical Reflection. 7(1), 26-29.
Find It!
Tuska, A.  (2005). History of Mathematics for Teachers of Upper Grades. Presented at Proceedings of the 3rd Conference on the History of Mathematics and Teaching of Mathematics, University of Miskolc.
Tuska, A.  (2005). Content Mentoring in Algebra through Lesson Study. Presented at Hawaii International Conference on Statistics, Mathematics and Related Fields, Honolulu, HI.
Tuska, A.  (2004). Lesson Study: A Student-Centered Professional Development for Teachers. Presented at Mathematics Education into the 21st Century Project’s International Conference, Ciechocinek, Poland.
Tuska, A.  (2003). Attempts to Improve the Problem Solving Abilities of Practicing Teachers. Presented at Mathematics Education into the 21st Century Project’s International Conference, Brno, Czech Republic.
Tuska, A.  (2002). Developing Number Sense: Resources for Teachers.  California Mathematics Council Communicator. 27(2), 25.
Find It!
Tuska, A.  (2002). Book review: 200 Puzzling Physics Problems by P. Gnadig, G. Honyek & K. F. Riley.  Mathematical Association of America.
Find It!
Tuska, A., Vari, P., & Krolopp, J.  (2002). Change of Emphasis in the Mathematics Assessment in Hungary.  Educational Research and Evaluation. 8(1), 109-127.
Find It!
Tuska, A.  (2001). Book review: Drawbridge Up. Mathematics – A Cultural Anathema by Hans Magnus Enzensberger.  Mathematical Association of America.
Find It!
Tuska, A.  (2001). Learning to Count: Language Makes a Difference.  California Mathematics Council Communicator. 25(4), 26-27.
Find It!
Tuska, A.  (1998). Book review: Readings in Cooperative Learning for Undergraduate Mathematics by E. Dubinsky, D. Matthews & B. Reynolds.  Mathematical Association of America.
Find It!
Tuska, A.  (1998). Frigyes Riesz.  Biographical Encyclopedia of Mathematicians. New York: Marshall Cavendish.
Find It!
Tuska, A.  (1998). What do teachers learn from a homework assignment?.  Virginia Mathematics Teacher. 25(1), 9-10.
Find It!
Tuska, A.  (1996). The role of graphing in AHSME - IMO - PUTNAM problems. Presented at Proceedings of the Eighth International Conference on Technology in Collegiate Mathematics, Reading, MA.
Tuska, A.  (1995). What can be learned from cross-cultural studies of mathematics teaching and learning?.  Virginia Mathematics Teacher. 21(2), 7-8.
Find It!
Tuska, A.  (1994). Pursuit problems with TI-85. Presented at Proceedings of the Sixth International Conference on Technology in Collegiate Mathematics, Reading, MA.
Tuska, A.  (1994). The use of examples and non-examples to overcome graphing calculator related false conceptions.  Proceedings of the Fifth International Conference on Technology in Collegiate Mathematics. (pp.643-645)
Find It!
Tuska, A.  (1992). LOGO - What is it good for?.  Inspiracio. 22-23.
Find It!
Vega, Oscar Enrique
Abarzua, N., Pomareda, R., & Vega, O.  (2016). Feet in Orthogonal-Buekenhout-Metz Unitals.  Advances in Geometry. 1-11.
Find It!
Adams, J., Dixon, J., Elder, J., Peabody, J., Willis, K., & Vega, O.  (2016). Combinatorial Analysis of a Subtraction Game on Graphs.  International Journal of Combinatorics. 1-13.
Find It!
Vega, O., Johnson, N., & Cherowitzo, W.  (2016). α-flokki and partial α-flokki.  Innovations in Incidence Geometry.
Find It!
Vega, O., & Elder, J.  (2016). Generalizing the Futurama Theorem.  The American Mathematical Monthly. 1-7.
Find It!
Hauschild, J., Ortiz, J., & Vega, O.  (2015). On the Levi graph of point-line configurations.  Involve, a Journal of Mathematics. 8(5), 893-900.
Find It!
Mellinger, K., Vaughn, R., & Vega, O.  (2015). Graphs embedded into finite projective planes.  Contributions to Discrete Mathematics. 10(1), 113-125.
Find It!
Aceves, E., Heywood, D., Klahr, A., & Vega, O.  (2014). CYCLES IN PROJECTIVE SPACES.  Journal of Geometry. 105(1), 111-117.
Find It!
Vega, O., Birnbaum, I., McDonald, R., Kuneli, M., & Urabe, K.  (2014). The well-covered dimension of products of graphs.  Discussiones Mathematicae Graph Theory. 34(4), 811-827.
Find It!
Lazebnik, F., Mellinger, K., & Vega, O.  (2013). Embedding Cycles in Finite Planes.  The Electronic Journal of Combinatorics. 20(3), 17.
Find It!
Vega, O., Amarasinghe, R., & Premadasa, K.  (2013). Advanced Algebra for Teachers. 
Find It!
Vega, O., Amarasinghe, R., Burger, L., Nogin, M., & Tuska, A.  (2013). Exploring Mathematics: Investigations for Elementary School Teachers.  Cognella.
Find It!
Vega, O., & Forgacs, T.  (2013). Analysis and Algebra.  University Readers.
Find It!
Peabody, J., Vega, O., & White, J.  (2012). CYCLES, WHEELS, AND GEARS IN FINITE PLANES.  Contributions to Discrete Mathematics. 8(2), 75-87.
Find It!
Cusick, L., & Vega, O.  (2011). Finite groups of derangements on the n-cube II.  Electronic Journal of Combinatorics. 18(1), 1-6.
Find It!
Vega, O.  (2010). On the number of k-gons in finite projective planes.  Note di Matematica. 29(1), 135-152.
Find It!
Vega, O.  (2010). Translation planes admitting a linear Abelian group of order (q+1)^2.  Note di Matematica. 29(1), 59-68.
Find It!
Vega, O., Cordero, M., & Montinaro, A.  (2009). Editors.  Proceedings of NormFest.
Find It!
Vega, O.  (2009). Generalized j-planes.  Note di Matematica. 29(2), 145-166.
Find It!
Vega, O.  (2009). Geometric structures arising from generalized j-planes.  Note di Matematica. 29(2), 1-18.
Find It!
Vega, O., & Johnson, N.  (2006). Symplectic spreads and symplectically paired spreads.  Note di Matematica. 26(2), 119-134.
Find It!
Vega, O., Johnson, N., & Wilke, F.  (2006). j,k-planes of order 4^3.  Innovations in Incidence Geometry. 1-34.
Find It!
Wu, Ke
Wu, K.  (2010). Minimum Distance Estimation in Two-Sample Scale Problem Under the Partial Koziol-Green Model of Random Censorship.  Far East Journal of Theoretical Statistics. 33(2), 107-122.
Find It!
Wu, K.  (2009). Estimating the Convolution of Distributions Under the Partial Koziol-Green Model of Random Censorship.  Far East Journal of Theoretical Statistics. 29(2), 137-148.
Find It!